Kelvin functions

In applied mathematics, the Kelvin functions Berν(x) and Beiν(x) are the real and imaginary parts, respectively, of

J_\nu(x e^{3 \pi i/4}),\,

where x is real, and J_\nu(z)\, is the νth order Bessel function of the first kind. Similarly, the functions Kerν(x) and Keiν(x) are the real and imaginary parts, respectively, of K_\nu(x e^{3 \pi i/4})\,, where K_\nu(z)\, is the νth order modified Bessel function of the second kind.

These functions are named after William Thomson, 1st Baron Kelvin.

While the Kelvin functions are defined as the real and imaginary parts of Bessel functions with x taken to be real, the functions can be analytically continued for complex arguments x ei φ, φ ∈ [0, 2π). With the exception of Bern(x) and Bein(x) for integral n, the Kelvin functions have a branch point at x = 0.

Contents

Ber(x)

For integers n, Bern(x) has the series expansion

\mathrm{Ber}_n(x) = \left(\frac{x}{2}\right)^n \sum_{k \geq 0} \frac{\cos\left[\left(\frac{3n}{4} %2B \frac{k}{2}\right)\pi\right]}{k! \Gamma(n %2B k %2B 1)} \left(\frac{x^2}{4}\right)^k

where \Gamma(z) is the Gamma function. The special case Ber_0(x), commonly denoted as just Ber(x), has the series expansion

\mathrm{Ber}(x) = 1 %2B \sum_{k \geq 1} \frac{(-1)^k (x/2)^{4k}}{[(2k)!]^2}

and asymptotic series

\mathrm{Ber}(x) \sim \frac{e^{\frac{x}{\sqrt{2}}}}{\sqrt{2 \pi x}} [f_1(x) \cos \alpha %2B g_1(x) \sin \alpha] - \frac{\mathrm{Kei}(x)}{\pi},

where \alpha = x/\sqrt{2} - \pi/8, and

f_1(x) = 1 %2B \sum_{k \geq 1} \frac{\cos(k \pi / 4)}{k! (8x)^k} \prod_{l = 1}^k (2l - 1)^2
g_1(x) = \sum_{k \geq 1} \frac{\sin(k \pi / 4)}{k! (8x)^k} \prod_{l = 1}^k (2l - 1)^2

Bei(x)

For integers n, Bei_n(x) has the series expansion

\mathrm{Bei}_n(x) = \left(\frac{x}{2}\right)^n \sum_{k \geq 0} \frac{\sin\left[\left(\frac{3n}{4} %2B \frac{k}{2}\right)\pi\right]}{k! \Gamma(n %2B k %2B 1)} \left(\frac{x^2}{4}\right)^k

where \Gamma(z) is the Gamma function. The special case Bei_0(x), commonly denoted as just Bei(x), has the series expansion

\mathrm{Bei}(x) = \sum_{k \geq 0} \frac{(-1)^k (x/2)^{4k%2B2}}{[(2k%2B1)!]^2}

and asymptotic series

\mathrm{Bei}(x) \sim \frac{e^{\frac{x}{\sqrt{2}}}}{\sqrt{2 \pi x}} [f_1(x) \sin \alpha - g_1(x) \cos \alpha] - \frac{\mathrm{Ker}(x)}{\pi},

where \alpha, f_1(x), and g_1(x) are defined as for Ber(x).


Ker(x)

For integers n, Kern(x) has the (complicated) series expansion


\begin{align}
\mathrm{Ker}_n(x) & = \frac{1}{2} \left(\frac{x}{2}\right)^{-n} \sum_{k=0}^{n-1} \cos\left[\left(\frac{3n}{4} %2B \frac{k}{2}\right)\pi\right] \frac{(n-k-1)!}{k!} \left(\frac{x^2}{4}\right)^k - \ln\left(\frac{x}{2}\right) \mathrm{Ber}_n(x) %2B \frac{\pi}{4}\mathrm{Bei}_n(x) \\
& {} \quad %2B \frac{1}{2} \left(\frac{x}{2}\right)^n \sum_{k \geq 0} \cos\left[\left(\frac{3n}{4} %2B \frac{k}{2}\right)\pi\right] \frac{\psi(k%2B1) %2B \psi(n %2B k %2B 1)}{k! (n%2Bk)!} \left(\frac{x^2}{4}\right)^k
\end{align}

where \psi(z) is the Digamma function. The special case Ker_0(x), commonly denoted as just Ker(x), has the series expansion

\mathrm{Ker}(x) = -\ln\left(\frac{x}{2}\right) \mathrm{Ber}(x) %2B \frac{\pi}{4}\mathrm{Bei}(x) %2B \sum_{k \geq 0} (-1)^k \frac{\psi(2k %2B 1)}{[(2k)!]^2} \left(\frac{x^2}{4}\right)^{2k}

and the asymptotic series

\mathrm{Ker}(x) \sim \sqrt{\frac{\pi}{2x}} e^{-\frac{x}{\sqrt{2}}} [f_2(x) \cos \beta %2B g_2(x) \sin \beta],

where \beta = x/\sqrt{2} %2B \pi/8, and

f_2(x) = 1 %2B \sum_{k \geq 1} (-1)^k \frac{\cos(k \pi / 4)}{k! (8x)^k} \prod_{l = 1}^k (2l - 1)^2
g_2(x) = \sum_{k \geq 1} (-1)^k \frac{\sin(k \pi / 4)}{k! (8x)^k} \prod_{l = 1}^k (2l - 1)^2.


Kei(x)

For integers n, Kein(x) has the (complicated) series expansion

\mathrm{Kei}_n(x) = -\frac{1}{2} \left(\frac{x}{2}\right)^{-n} \sum_{k=0}^{n-1} \sin\left[\left(\frac{3n}{4} %2B \frac{k}{2}\right)\pi\right] \frac{(n-k-1)!}{k!} \left(\frac{x^2}{4}\right)^k - \ln\left(\frac{x}{2}\right) \mathrm{Bei}_n(x) - \frac{\pi}{4}\mathrm{Ber}_n(x) %2B \frac{1}{2} \left(\frac{x}{2}\right)^n \sum_{k \geq 0} \sin\left[\left(\frac{3n}{4} %2B \frac{k}{2}\right)\pi\right] \frac{\psi(k%2B1) %2B \psi(n %2B k %2B 1)}{k! (n%2Bk)!} \left(\frac{x^2}{4}\right)^k

where \psi(z) is the Digamma function. The special case Kei_0(x), commonly denoted as just Kei(x), has the series expansion

\mathrm{Kei}(x) = -\ln\left(\frac{x}{2}\right) \mathrm{Bei}(x) - \frac{\pi}{4}\mathrm{Ber}(x) %2B \sum_{k \geq 0} (-1)^k \frac{\psi(2k %2B 2)}{[(2k%2B1)!]^2} \left(\frac{x^2}{4}\right)^{2k%2B1}

and the asymptotic series

\mathrm{Kei}(x) \sim -\sqrt{\frac{\pi}{2x}} e^{-\frac{x}{\sqrt{2}}} [f_2(x) \sin \beta %2B g_2(x) \cos \beta],

where \beta, f_2(x), and g_2(x) are defined as for Ker(x).


See also

References

External links